Initial Commit
This commit is contained in:
614
include/asio/detail/impl/kqueue_reactor.ipp
Normal file
614
include/asio/detail/impl/kqueue_reactor.ipp
Normal file
@@ -0,0 +1,614 @@
|
||||
//
|
||||
// detail/impl/kqueue_reactor.ipp
|
||||
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
//
|
||||
// Copyright (c) 2003-2025 Christopher M. Kohlhoff (chris at kohlhoff dot com)
|
||||
// Copyright (c) 2005 Stefan Arentz (stefan at soze dot com)
|
||||
//
|
||||
// Distributed under the Boost Software License, Version 1.0. (See accompanying
|
||||
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
||||
//
|
||||
|
||||
#ifndef ASIO_DETAIL_IMPL_KQUEUE_REACTOR_IPP
|
||||
#define ASIO_DETAIL_IMPL_KQUEUE_REACTOR_IPP
|
||||
|
||||
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
|
||||
# pragma once
|
||||
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
|
||||
|
||||
#include "asio/detail/config.hpp"
|
||||
|
||||
#if defined(ASIO_HAS_KQUEUE)
|
||||
|
||||
#include "asio/config.hpp"
|
||||
#include "asio/detail/kqueue_reactor.hpp"
|
||||
#include "asio/detail/scheduler.hpp"
|
||||
#include "asio/detail/throw_error.hpp"
|
||||
#include "asio/error.hpp"
|
||||
|
||||
#if defined(__NetBSD__)
|
||||
# include <sys/param.h>
|
||||
#endif
|
||||
|
||||
#include "asio/detail/push_options.hpp"
|
||||
|
||||
#if defined(__NetBSD__) && __NetBSD_Version__ < 999001500
|
||||
# define ASIO_KQUEUE_EV_SET(ev, ident, filt, flags, fflags, data, udata) \
|
||||
EV_SET(ev, ident, filt, flags, fflags, data, \
|
||||
reinterpret_cast<intptr_t>(static_cast<void*>(udata)))
|
||||
#else
|
||||
# define ASIO_KQUEUE_EV_SET(ev, ident, filt, flags, fflags, data, udata) \
|
||||
EV_SET(ev, ident, filt, flags, fflags, data, udata)
|
||||
#endif
|
||||
|
||||
namespace asio {
|
||||
namespace detail {
|
||||
|
||||
kqueue_reactor::kqueue_reactor(asio::execution_context& ctx)
|
||||
: execution_context_service_base<kqueue_reactor>(ctx),
|
||||
scheduler_(use_service<scheduler>(ctx)),
|
||||
mutex_(config(ctx).get("reactor", "registration_locking", true),
|
||||
config(ctx).get("reactor", "registration_locking_spin_count", 0)),
|
||||
kqueue_fd_(do_kqueue_create()),
|
||||
interrupter_(),
|
||||
shutdown_(false),
|
||||
io_locking_(config(ctx).get("reactor", "io_locking", true)),
|
||||
io_locking_spin_count_(
|
||||
config(ctx).get("reactor", "io_locking_spin_count", 0)),
|
||||
registered_descriptors_mutex_(mutex_.enabled()),
|
||||
registered_descriptors_(execution_context::allocator<void>(ctx),
|
||||
config(ctx).get("reactor", "preallocated_io_objects", 0U),
|
||||
io_locking_, io_locking_spin_count_)
|
||||
{
|
||||
struct kevent events[1];
|
||||
ASIO_KQUEUE_EV_SET(&events[0], interrupter_.read_descriptor(),
|
||||
EVFILT_READ, EV_ADD, 0, 0, &interrupter_);
|
||||
if (::kevent(kqueue_fd_, events, 1, 0, 0, 0) == -1)
|
||||
{
|
||||
asio::error_code error(errno,
|
||||
asio::error::get_system_category());
|
||||
asio::detail::throw_error(error);
|
||||
}
|
||||
}
|
||||
|
||||
kqueue_reactor::~kqueue_reactor()
|
||||
{
|
||||
close(kqueue_fd_);
|
||||
}
|
||||
|
||||
void kqueue_reactor::shutdown()
|
||||
{
|
||||
mutex::scoped_lock lock(mutex_);
|
||||
shutdown_ = true;
|
||||
lock.unlock();
|
||||
|
||||
op_queue<operation> ops;
|
||||
|
||||
while (descriptor_state* state = registered_descriptors_.first())
|
||||
{
|
||||
for (int i = 0; i < max_ops; ++i)
|
||||
ops.push(state->op_queue_[i]);
|
||||
state->shutdown_ = true;
|
||||
registered_descriptors_.free(state);
|
||||
}
|
||||
|
||||
timer_queues_.get_all_timers(ops);
|
||||
|
||||
scheduler_.abandon_operations(ops);
|
||||
}
|
||||
|
||||
void kqueue_reactor::notify_fork(
|
||||
asio::execution_context::fork_event fork_ev)
|
||||
{
|
||||
if (fork_ev == asio::execution_context::fork_child)
|
||||
{
|
||||
// The kqueue descriptor is automatically closed in the child.
|
||||
kqueue_fd_ = -1;
|
||||
kqueue_fd_ = do_kqueue_create();
|
||||
|
||||
interrupter_.recreate();
|
||||
|
||||
struct kevent events[2];
|
||||
ASIO_KQUEUE_EV_SET(&events[0], interrupter_.read_descriptor(),
|
||||
EVFILT_READ, EV_ADD, 0, 0, &interrupter_);
|
||||
if (::kevent(kqueue_fd_, events, 1, 0, 0, 0) == -1)
|
||||
{
|
||||
asio::error_code ec(errno,
|
||||
asio::error::get_system_category());
|
||||
asio::detail::throw_error(ec, "kqueue interrupter registration");
|
||||
}
|
||||
|
||||
// Re-register all descriptors with kqueue.
|
||||
mutex::scoped_lock descriptors_lock(registered_descriptors_mutex_);
|
||||
for (descriptor_state* state = registered_descriptors_.first();
|
||||
state != 0; state = state->next_)
|
||||
{
|
||||
if (state->num_kevents_ > 0)
|
||||
{
|
||||
ASIO_KQUEUE_EV_SET(&events[0], state->descriptor_,
|
||||
EVFILT_READ, EV_ADD | EV_CLEAR, 0, 0, state);
|
||||
ASIO_KQUEUE_EV_SET(&events[1], state->descriptor_,
|
||||
EVFILT_WRITE, EV_ADD | EV_CLEAR, 0, 0, state);
|
||||
if (::kevent(kqueue_fd_, events, state->num_kevents_, 0, 0, 0) == -1)
|
||||
{
|
||||
asio::error_code ec(errno,
|
||||
asio::error::get_system_category());
|
||||
asio::detail::throw_error(ec, "kqueue re-registration");
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void kqueue_reactor::init_task()
|
||||
{
|
||||
scheduler_.init_task();
|
||||
}
|
||||
|
||||
int kqueue_reactor::register_descriptor(socket_type descriptor,
|
||||
kqueue_reactor::per_descriptor_data& descriptor_data)
|
||||
{
|
||||
descriptor_data = allocate_descriptor_state();
|
||||
|
||||
ASIO_HANDLER_REACTOR_REGISTRATION((
|
||||
context(), static_cast<uintmax_t>(descriptor),
|
||||
reinterpret_cast<uintmax_t>(descriptor_data)));
|
||||
|
||||
mutex::scoped_lock lock(descriptor_data->mutex_);
|
||||
|
||||
descriptor_data->descriptor_ = descriptor;
|
||||
descriptor_data->num_kevents_ = 0;
|
||||
descriptor_data->shutdown_ = false;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int kqueue_reactor::register_internal_descriptor(
|
||||
int op_type, socket_type descriptor,
|
||||
kqueue_reactor::per_descriptor_data& descriptor_data, reactor_op* op)
|
||||
{
|
||||
descriptor_data = allocate_descriptor_state();
|
||||
|
||||
ASIO_HANDLER_REACTOR_REGISTRATION((
|
||||
context(), static_cast<uintmax_t>(descriptor),
|
||||
reinterpret_cast<uintmax_t>(descriptor_data)));
|
||||
|
||||
mutex::scoped_lock lock(descriptor_data->mutex_);
|
||||
|
||||
descriptor_data->descriptor_ = descriptor;
|
||||
descriptor_data->num_kevents_ = 1;
|
||||
descriptor_data->shutdown_ = false;
|
||||
descriptor_data->op_queue_[op_type].push(op);
|
||||
|
||||
struct kevent events[1];
|
||||
ASIO_KQUEUE_EV_SET(&events[0], descriptor, EVFILT_READ,
|
||||
EV_ADD | EV_CLEAR, 0, 0, descriptor_data);
|
||||
if (::kevent(kqueue_fd_, events, 1, 0, 0, 0) == -1)
|
||||
return errno;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
void kqueue_reactor::move_descriptor(socket_type,
|
||||
kqueue_reactor::per_descriptor_data& target_descriptor_data,
|
||||
kqueue_reactor::per_descriptor_data& source_descriptor_data)
|
||||
{
|
||||
target_descriptor_data = source_descriptor_data;
|
||||
source_descriptor_data = 0;
|
||||
}
|
||||
|
||||
void kqueue_reactor::call_post_immediate_completion(
|
||||
operation* op, bool is_continuation, const void* self)
|
||||
{
|
||||
static_cast<const kqueue_reactor*>(self)->post_immediate_completion(
|
||||
op, is_continuation);
|
||||
}
|
||||
|
||||
void kqueue_reactor::start_op(int op_type, socket_type descriptor,
|
||||
kqueue_reactor::per_descriptor_data& descriptor_data, reactor_op* op,
|
||||
bool is_continuation, bool allow_speculative,
|
||||
void (*on_immediate)(operation*, bool, const void*),
|
||||
const void* immediate_arg)
|
||||
{
|
||||
if (!descriptor_data)
|
||||
{
|
||||
op->ec_ = asio::error::bad_descriptor;
|
||||
on_immediate(op, is_continuation, immediate_arg);
|
||||
return;
|
||||
}
|
||||
|
||||
mutex::scoped_lock descriptor_lock(descriptor_data->mutex_);
|
||||
|
||||
if (descriptor_data->shutdown_)
|
||||
{
|
||||
on_immediate(op, is_continuation, immediate_arg);
|
||||
return;
|
||||
}
|
||||
|
||||
if (descriptor_data->op_queue_[op_type].empty())
|
||||
{
|
||||
static const int num_kevents[max_ops] = { 1, 2, 1 };
|
||||
|
||||
if (allow_speculative
|
||||
&& (op_type != read_op
|
||||
|| descriptor_data->op_queue_[except_op].empty()))
|
||||
{
|
||||
if (op->perform())
|
||||
{
|
||||
descriptor_lock.unlock();
|
||||
on_immediate(op, is_continuation, immediate_arg);
|
||||
return;
|
||||
}
|
||||
|
||||
if (descriptor_data->num_kevents_ < num_kevents[op_type])
|
||||
{
|
||||
struct kevent events[2];
|
||||
ASIO_KQUEUE_EV_SET(&events[0], descriptor, EVFILT_READ,
|
||||
EV_ADD | EV_CLEAR, 0, 0, descriptor_data);
|
||||
ASIO_KQUEUE_EV_SET(&events[1], descriptor, EVFILT_WRITE,
|
||||
EV_ADD | EV_CLEAR, 0, 0, descriptor_data);
|
||||
if (::kevent(kqueue_fd_, events, num_kevents[op_type], 0, 0, 0) != -1)
|
||||
{
|
||||
descriptor_data->num_kevents_ = num_kevents[op_type];
|
||||
}
|
||||
else
|
||||
{
|
||||
op->ec_ = asio::error_code(errno,
|
||||
asio::error::get_system_category());
|
||||
on_immediate(op, is_continuation, immediate_arg);
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
if (descriptor_data->num_kevents_ < num_kevents[op_type])
|
||||
descriptor_data->num_kevents_ = num_kevents[op_type];
|
||||
|
||||
struct kevent events[2];
|
||||
ASIO_KQUEUE_EV_SET(&events[0], descriptor, EVFILT_READ,
|
||||
EV_ADD | EV_CLEAR, 0, 0, descriptor_data);
|
||||
ASIO_KQUEUE_EV_SET(&events[1], descriptor, EVFILT_WRITE,
|
||||
EV_ADD | EV_CLEAR, 0, 0, descriptor_data);
|
||||
::kevent(kqueue_fd_, events, descriptor_data->num_kevents_, 0, 0, 0);
|
||||
}
|
||||
}
|
||||
|
||||
descriptor_data->op_queue_[op_type].push(op);
|
||||
scheduler_.work_started();
|
||||
}
|
||||
|
||||
void kqueue_reactor::cancel_ops(socket_type,
|
||||
kqueue_reactor::per_descriptor_data& descriptor_data)
|
||||
{
|
||||
if (!descriptor_data)
|
||||
return;
|
||||
|
||||
mutex::scoped_lock descriptor_lock(descriptor_data->mutex_);
|
||||
|
||||
op_queue<operation> ops;
|
||||
for (int i = 0; i < max_ops; ++i)
|
||||
{
|
||||
while (reactor_op* op = descriptor_data->op_queue_[i].front())
|
||||
{
|
||||
op->ec_ = asio::error::operation_aborted;
|
||||
descriptor_data->op_queue_[i].pop();
|
||||
ops.push(op);
|
||||
}
|
||||
}
|
||||
|
||||
descriptor_lock.unlock();
|
||||
|
||||
scheduler_.post_deferred_completions(ops);
|
||||
}
|
||||
|
||||
void kqueue_reactor::cancel_ops_by_key(socket_type,
|
||||
kqueue_reactor::per_descriptor_data& descriptor_data,
|
||||
int op_type, void* cancellation_key)
|
||||
{
|
||||
if (!descriptor_data)
|
||||
return;
|
||||
|
||||
mutex::scoped_lock descriptor_lock(descriptor_data->mutex_);
|
||||
|
||||
op_queue<operation> ops;
|
||||
op_queue<reactor_op> other_ops;
|
||||
while (reactor_op* op = descriptor_data->op_queue_[op_type].front())
|
||||
{
|
||||
descriptor_data->op_queue_[op_type].pop();
|
||||
if (op->cancellation_key_ == cancellation_key)
|
||||
{
|
||||
op->ec_ = asio::error::operation_aborted;
|
||||
ops.push(op);
|
||||
}
|
||||
else
|
||||
other_ops.push(op);
|
||||
}
|
||||
descriptor_data->op_queue_[op_type].push(other_ops);
|
||||
|
||||
descriptor_lock.unlock();
|
||||
|
||||
scheduler_.post_deferred_completions(ops);
|
||||
}
|
||||
|
||||
void kqueue_reactor::deregister_descriptor(socket_type descriptor,
|
||||
kqueue_reactor::per_descriptor_data& descriptor_data, bool closing)
|
||||
{
|
||||
if (!descriptor_data)
|
||||
return;
|
||||
|
||||
mutex::scoped_lock descriptor_lock(descriptor_data->mutex_);
|
||||
|
||||
if (!descriptor_data->shutdown_)
|
||||
{
|
||||
if (closing)
|
||||
{
|
||||
// The descriptor will be automatically removed from the kqueue when it
|
||||
// is closed.
|
||||
}
|
||||
else
|
||||
{
|
||||
struct kevent events[2];
|
||||
ASIO_KQUEUE_EV_SET(&events[0], descriptor,
|
||||
EVFILT_READ, EV_DELETE, 0, 0, 0);
|
||||
ASIO_KQUEUE_EV_SET(&events[1], descriptor,
|
||||
EVFILT_WRITE, EV_DELETE, 0, 0, 0);
|
||||
::kevent(kqueue_fd_, events, descriptor_data->num_kevents_, 0, 0, 0);
|
||||
}
|
||||
|
||||
op_queue<operation> ops;
|
||||
for (int i = 0; i < max_ops; ++i)
|
||||
{
|
||||
while (reactor_op* op = descriptor_data->op_queue_[i].front())
|
||||
{
|
||||
op->ec_ = asio::error::operation_aborted;
|
||||
descriptor_data->op_queue_[i].pop();
|
||||
ops.push(op);
|
||||
}
|
||||
}
|
||||
|
||||
descriptor_data->descriptor_ = -1;
|
||||
descriptor_data->shutdown_ = true;
|
||||
|
||||
descriptor_lock.unlock();
|
||||
|
||||
ASIO_HANDLER_REACTOR_DEREGISTRATION((
|
||||
context(), static_cast<uintmax_t>(descriptor),
|
||||
reinterpret_cast<uintmax_t>(descriptor_data)));
|
||||
|
||||
scheduler_.post_deferred_completions(ops);
|
||||
|
||||
// Leave descriptor_data set so that it will be freed by the subsequent
|
||||
// call to cleanup_descriptor_data.
|
||||
}
|
||||
else
|
||||
{
|
||||
// We are shutting down, so prevent cleanup_descriptor_data from freeing
|
||||
// the descriptor_data object and let the destructor free it instead.
|
||||
descriptor_data = 0;
|
||||
}
|
||||
}
|
||||
|
||||
void kqueue_reactor::deregister_internal_descriptor(socket_type descriptor,
|
||||
kqueue_reactor::per_descriptor_data& descriptor_data)
|
||||
{
|
||||
if (!descriptor_data)
|
||||
return;
|
||||
|
||||
mutex::scoped_lock descriptor_lock(descriptor_data->mutex_);
|
||||
|
||||
if (!descriptor_data->shutdown_)
|
||||
{
|
||||
struct kevent events[2];
|
||||
ASIO_KQUEUE_EV_SET(&events[0], descriptor,
|
||||
EVFILT_READ, EV_DELETE, 0, 0, 0);
|
||||
ASIO_KQUEUE_EV_SET(&events[1], descriptor,
|
||||
EVFILT_WRITE, EV_DELETE, 0, 0, 0);
|
||||
::kevent(kqueue_fd_, events, descriptor_data->num_kevents_, 0, 0, 0);
|
||||
|
||||
op_queue<operation> ops;
|
||||
for (int i = 0; i < max_ops; ++i)
|
||||
ops.push(descriptor_data->op_queue_[i]);
|
||||
|
||||
descriptor_data->descriptor_ = -1;
|
||||
descriptor_data->shutdown_ = true;
|
||||
|
||||
descriptor_lock.unlock();
|
||||
|
||||
ASIO_HANDLER_REACTOR_DEREGISTRATION((
|
||||
context(), static_cast<uintmax_t>(descriptor),
|
||||
reinterpret_cast<uintmax_t>(descriptor_data)));
|
||||
|
||||
// Leave descriptor_data set so that it will be freed by the subsequent
|
||||
// call to cleanup_descriptor_data.
|
||||
}
|
||||
else
|
||||
{
|
||||
// We are shutting down, so prevent cleanup_descriptor_data from freeing
|
||||
// the descriptor_data object and let the destructor free it instead.
|
||||
descriptor_data = 0;
|
||||
}
|
||||
}
|
||||
|
||||
void kqueue_reactor::cleanup_descriptor_data(
|
||||
per_descriptor_data& descriptor_data)
|
||||
{
|
||||
if (descriptor_data)
|
||||
{
|
||||
free_descriptor_state(descriptor_data);
|
||||
descriptor_data = 0;
|
||||
}
|
||||
}
|
||||
|
||||
void kqueue_reactor::run(long usec, op_queue<operation>& ops)
|
||||
{
|
||||
mutex::scoped_lock lock(mutex_);
|
||||
|
||||
// Determine how long to block while waiting for events.
|
||||
timespec timeout_buf = { 0, 0 };
|
||||
timespec* timeout = usec ? get_timeout(usec, timeout_buf) : &timeout_buf;
|
||||
|
||||
lock.unlock();
|
||||
|
||||
// Block on the kqueue descriptor.
|
||||
struct kevent events[128];
|
||||
int num_events = kevent(kqueue_fd_, 0, 0, events, 128, timeout);
|
||||
|
||||
#if defined(ASIO_ENABLE_HANDLER_TRACKING)
|
||||
// Trace the waiting events.
|
||||
for (int i = 0; i < num_events; ++i)
|
||||
{
|
||||
void* ptr = reinterpret_cast<void*>(events[i].udata);
|
||||
if (ptr != &interrupter_)
|
||||
{
|
||||
unsigned event_mask = 0;
|
||||
switch (events[i].filter)
|
||||
{
|
||||
case EVFILT_READ:
|
||||
event_mask |= ASIO_HANDLER_REACTOR_READ_EVENT;
|
||||
break;
|
||||
case EVFILT_WRITE:
|
||||
event_mask |= ASIO_HANDLER_REACTOR_WRITE_EVENT;
|
||||
break;
|
||||
}
|
||||
if ((events[i].flags & (EV_ERROR | EV_OOBAND)) != 0)
|
||||
event_mask |= ASIO_HANDLER_REACTOR_ERROR_EVENT;
|
||||
ASIO_HANDLER_REACTOR_EVENTS((context(),
|
||||
reinterpret_cast<uintmax_t>(ptr), event_mask));
|
||||
}
|
||||
}
|
||||
#endif // defined(ASIO_ENABLE_HANDLER_TRACKING)
|
||||
|
||||
// Dispatch the waiting events.
|
||||
for (int i = 0; i < num_events; ++i)
|
||||
{
|
||||
void* ptr = reinterpret_cast<void*>(events[i].udata);
|
||||
if (ptr == &interrupter_)
|
||||
{
|
||||
interrupter_.reset();
|
||||
}
|
||||
else
|
||||
{
|
||||
descriptor_state* descriptor_data = static_cast<descriptor_state*>(ptr);
|
||||
mutex::scoped_lock descriptor_lock(descriptor_data->mutex_);
|
||||
|
||||
if (events[i].filter == EVFILT_WRITE
|
||||
&& descriptor_data->num_kevents_ == 2
|
||||
&& descriptor_data->op_queue_[write_op].empty())
|
||||
{
|
||||
// Some descriptor types, like serial ports, don't seem to support
|
||||
// EV_CLEAR with EVFILT_WRITE. Since we have no pending write
|
||||
// operations we'll remove the EVFILT_WRITE registration here so that
|
||||
// we don't end up in a tight spin.
|
||||
struct kevent delete_events[1];
|
||||
ASIO_KQUEUE_EV_SET(&delete_events[0],
|
||||
descriptor_data->descriptor_, EVFILT_WRITE, EV_DELETE, 0, 0, 0);
|
||||
::kevent(kqueue_fd_, delete_events, 1, 0, 0, 0);
|
||||
descriptor_data->num_kevents_ = 1;
|
||||
}
|
||||
|
||||
// Exception operations must be processed first to ensure that any
|
||||
// out-of-band data is read before normal data.
|
||||
#if defined(__NetBSD__)
|
||||
static const unsigned int filter[max_ops] =
|
||||
#else
|
||||
static const int filter[max_ops] =
|
||||
#endif
|
||||
{ EVFILT_READ, EVFILT_WRITE, EVFILT_READ };
|
||||
for (int j = max_ops - 1; j >= 0; --j)
|
||||
{
|
||||
if (events[i].filter == filter[j])
|
||||
{
|
||||
if (j != except_op || events[i].flags & EV_OOBAND)
|
||||
{
|
||||
while (reactor_op* op = descriptor_data->op_queue_[j].front())
|
||||
{
|
||||
if (events[i].flags & EV_ERROR)
|
||||
{
|
||||
op->ec_ = asio::error_code(
|
||||
static_cast<int>(events[i].data),
|
||||
asio::error::get_system_category());
|
||||
descriptor_data->op_queue_[j].pop();
|
||||
ops.push(op);
|
||||
}
|
||||
if (op->perform())
|
||||
{
|
||||
descriptor_data->op_queue_[j].pop();
|
||||
ops.push(op);
|
||||
}
|
||||
else
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
lock.lock();
|
||||
timer_queues_.get_ready_timers(ops);
|
||||
}
|
||||
|
||||
void kqueue_reactor::interrupt()
|
||||
{
|
||||
interrupter_.interrupt();
|
||||
}
|
||||
|
||||
int kqueue_reactor::do_kqueue_create()
|
||||
{
|
||||
int fd = ::kqueue();
|
||||
if (fd == -1)
|
||||
{
|
||||
asio::error_code ec(errno,
|
||||
asio::error::get_system_category());
|
||||
asio::detail::throw_error(ec, "kqueue");
|
||||
}
|
||||
return fd;
|
||||
}
|
||||
|
||||
kqueue_reactor::descriptor_state* kqueue_reactor::allocate_descriptor_state()
|
||||
{
|
||||
mutex::scoped_lock descriptors_lock(registered_descriptors_mutex_);
|
||||
return registered_descriptors_.alloc(io_locking_, io_locking_spin_count_);
|
||||
}
|
||||
|
||||
void kqueue_reactor::free_descriptor_state(kqueue_reactor::descriptor_state* s)
|
||||
{
|
||||
mutex::scoped_lock descriptors_lock(registered_descriptors_mutex_);
|
||||
registered_descriptors_.free(s);
|
||||
}
|
||||
|
||||
void kqueue_reactor::do_add_timer_queue(timer_queue_base& queue)
|
||||
{
|
||||
mutex::scoped_lock lock(mutex_);
|
||||
timer_queues_.insert(&queue);
|
||||
}
|
||||
|
||||
void kqueue_reactor::do_remove_timer_queue(timer_queue_base& queue)
|
||||
{
|
||||
mutex::scoped_lock lock(mutex_);
|
||||
timer_queues_.erase(&queue);
|
||||
}
|
||||
|
||||
timespec* kqueue_reactor::get_timeout(long usec, timespec& ts)
|
||||
{
|
||||
// By default we will wait no longer than 5 minutes. This will ensure that
|
||||
// any changes to the system clock are detected after no longer than this.
|
||||
const long max_usec = 5 * 60 * 1000 * 1000;
|
||||
usec = timer_queues_.wait_duration_usec(
|
||||
(usec < 0 || max_usec < usec) ? max_usec : usec);
|
||||
ts.tv_sec = usec / 1000000;
|
||||
ts.tv_nsec = (usec % 1000000) * 1000;
|
||||
return &ts;
|
||||
}
|
||||
|
||||
} // namespace detail
|
||||
} // namespace asio
|
||||
|
||||
#undef ASIO_KQUEUE_EV_SET
|
||||
|
||||
#include "asio/detail/pop_options.hpp"
|
||||
|
||||
#endif // defined(ASIO_HAS_KQUEUE)
|
||||
|
||||
#endif // ASIO_DETAIL_IMPL_KQUEUE_REACTOR_IPP
|
||||
Reference in New Issue
Block a user